3.664 \(\int \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))^n \, dx\)

Optimal. Leaf size=85 \[ -\frac {2 a \cos (e+f x) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n} \, _2F_1\left (\frac {1}{2},-n;\frac {3}{2};\frac {d (1-\sin (e+f x))}{c+d}\right )}{f \sqrt {a \sin (e+f x)+a}} \]

[Out]

-2*a*cos(f*x+e)*hypergeom([1/2, -n],[3/2],d*(1-sin(f*x+e))/(c+d))*(c+d*sin(f*x+e))^n/f/(((c+d*sin(f*x+e))/(c+d
))^n)/(a+a*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {2776, 70, 69} \[ -\frac {2 a \cos (e+f x) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n} \, _2F_1\left (\frac {1}{2},-n;\frac {3}{2};\frac {d (1-\sin (e+f x))}{c+d}\right )}{f \sqrt {a \sin (e+f x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n,x]

[Out]

(-2*a*Cos[e + f*x]*Hypergeometric2F1[1/2, -n, 3/2, (d*(1 - Sin[e + f*x]))/(c + d)]*(c + d*Sin[e + f*x])^n)/(f*
Sqrt[a + a*Sin[e + f*x]]*((c + d*Sin[e + f*x])/(c + d))^n)

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*((b*(c + d*x))/(b*c - a*d))^FracPart[n]), Int[(a + b*x)^m*Simp[(b*c)/(b*c - a*d) + (b*d*x)/(b*c -
 a*d), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 2776

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist
[(a^2*Cos[e + f*x])/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]]), Subst[Int[(c + d*x)^n/Sqrt[a - b*x]
, x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ
[c^2 - d^2, 0] &&  !IntegerQ[2*n]

Rubi steps

\begin {align*} \int \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))^n \, dx &=\frac {\left (a^2 \cos (e+f x)\right ) \operatorname {Subst}\left (\int \frac {(c+d x)^n}{\sqrt {a-a x}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {a-a \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}\\ &=\frac {\left (a^2 \cos (e+f x) (c+d \sin (e+f x))^n \left (-\frac {a (c+d \sin (e+f x))}{-a c-a d}\right )^{-n}\right ) \operatorname {Subst}\left (\int \frac {\left (\frac {c}{c+d}+\frac {d x}{c+d}\right )^n}{\sqrt {a-a x}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {a-a \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}\\ &=-\frac {2 a \cos (e+f x) \, _2F_1\left (\frac {1}{2},-n;\frac {3}{2};\frac {d (1-\sin (e+f x))}{c+d}\right ) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n}}{f \sqrt {a+a \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 4.63, size = 0, normalized size = 0.00 \[ \int \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))^n \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n,x]

[Out]

Integrate[Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x]

________________________________________________________________________________________

fricas [F]  time = 0.46, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {a \sin \left (f x + e\right ) + a} {\left (d \sin \left (f x + e\right ) + c\right )}^{n}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(1/2)*(c+d*sin(f*x+e))^n,x, algorithm="fricas")

[Out]

integral(sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e) + c)^n, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a \sin \left (f x + e\right ) + a} {\left (d \sin \left (f x + e\right ) + c\right )}^{n}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(1/2)*(c+d*sin(f*x+e))^n,x, algorithm="giac")

[Out]

integrate(sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e) + c)^n, x)

________________________________________________________________________________________

maple [F]  time = 0.31, size = 0, normalized size = 0.00 \[ \int \sqrt {a +a \sin \left (f x +e \right )}\, \left (c +d \sin \left (f x +e \right )\right )^{n}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^(1/2)*(c+d*sin(f*x+e))^n,x)

[Out]

int((a+a*sin(f*x+e))^(1/2)*(c+d*sin(f*x+e))^n,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a \sin \left (f x + e\right ) + a} {\left (d \sin \left (f x + e\right ) + c\right )}^{n}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(1/2)*(c+d*sin(f*x+e))^n,x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e) + c)^n, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \sqrt {a+a\,\sin \left (e+f\,x\right )}\,{\left (c+d\,\sin \left (e+f\,x\right )\right )}^n \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(e + f*x))^(1/2)*(c + d*sin(e + f*x))^n,x)

[Out]

int((a + a*sin(e + f*x))^(1/2)*(c + d*sin(e + f*x))^n, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )} \left (c + d \sin {\left (e + f x \right )}\right )^{n}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**(1/2)*(c+d*sin(f*x+e))**n,x)

[Out]

Integral(sqrt(a*(sin(e + f*x) + 1))*(c + d*sin(e + f*x))**n, x)

________________________________________________________________________________________